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SUMMARY 

In order to solve the Navier-Stokes equations by spectral methods, we develop an algorithm using a 
staggered grid to compute the pressure. On this grid, an iterative process based on an artificial compressibility 
matrix associates the pressure with the continuity equation. This method is very accurate and avoids 
naturally most of the effects of parasite modes appearing in classical spectral methods with a velocity- 
pressure formulation. 
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INTRODUCTION 

When solving the incompressible Navier-Stokes equations for an inhomogeneous flow, difficulties 
arise during pressure computation. There are two classical ways of solving these problems. 

The first one consists of taking the divergence of the momentum equation and using the 
continuity equation; we obtain a Poisson equation for the pressure. The unknowns are coupled by 
boundary conditions for the pressure (normal component of the momentum equation). Some 
compatibility conditions have to be satisfied to avoid singularities at the first time 

The second one consists of solving simultaneously the momentum equation and the continuity 
e q ~ a t i o n . ~ . ~  We have made some tests, and the results obtained on the Stokes problem are better 
with the second t e c h n i q ~ e . ~  

M o r c h o i ~ n e ~ ~ ~  has built a technique with an operator joining up the pressure with the velocity 
divergence on the same grid. This method can be compared with the influence matrix method.’ 
Some parasite modes for the pressure are found and have to be ‘filtered’ whichever numerical 
method is used.’ 

The purpose of the present paper is to solve the two-dimensional Navier-Stokes equations with 
a staggered grid; we use an iterative process with an approximation of the operator connecting 
pressure to velocity divergence. With the staggered grid, seven of the eight parasite modes seem to 
be naturally eliminated (the constant mode remains). 

The studied problem is presented; then the method is developed and an application to the 
regularized square cavity problem is given. 

PROBLEM STATEMENT 

Consider the two-dimensional Navier-Stokes problem defined in a square domain R for a viscous 
incompressible fluid. The equations are 
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Momentum equation 

au 
-- - - VP - (U.V)U + vAU, Vt€[O,  TI, V X E O  = ]  - 1, + 1C2. 
at 

(1) 

Continuity equation 

v * u = o ,  V t € [ O , T ] ,  VX€O=]- 1, + 1[* 

u = u,, VX€dO, Vt€[O,  TI .  

Boundary conditions 

(3) 

Initial conditions satisfying boundary conditions (3) 

u = u , ,  t = O  VX€R.  (4) 

The velocity U is defined at the classical Chebyshev grid points ( x on Figure 1). Their co- 
ordinates are 

n(i - 1) n( j  - 1) 
xi = COS (), N x -  1 yj = cos (-) N , - 1  ’ 

where N ,  and N ,  are the number of discretization points in the x and y directions, respectively. 
The momentum equation (1) is solved on that grid with boundary conditions (3). 

The pressure P is defined at the staggered Chebyshev grid points ( *  on Figure 1). Their co- 
ordinates are 

n(2i - 1) n(2j- 1) 

2(Nx - 1) 
x;= cos( ), y ; =  cos( w, - 1) ). 

- 1  I 
P : Pressure -= continuity equation 

x u: Velocity -..-.-- momentum equation 

Figure 1. Staggered grid with Chebyshev collocation points (example: N ,  = N ,  = 5 )  
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The continuity equation (2) is solved on the grid with ( N ,  - 1) x ( N ,  - 1)  points and without 
boundary conditions for the pressure P .  

NUMERICAL SCHEME 

To solve the problem defined by equations (1)-(4), a second-order finite-difference discretization in 
time and a spectral discretization in space are used. 

Discretization 

The convection and diffusion terms in equation (1) are treated in the same way by an Adams- 
Bashforth scheme. For inhomogeneous flows, with no-slip boundary conditions, the stability of 
that scheme is ensured by these boundary conditions.' As explicit schemes require very small time 
steps for stability, an implicit treatment is introduced. The computation is performed in two steps; 
the first one is written 

(7) 
- 

L,L,(U - U") = 6t  [3H" - $H"- - V P " ] ,  

and the second one is 

L,L,(U"+' - ZT) = - GtV(P"+' 
where 

H" = - ( U " - V ) U n  + vAU", with 
and 

a 2  a 2  
L , = l - ? y -  L,=l-v-, 

axz '  8Y2 
with 

q = O(vGt, U2Gt2). 

L, and L, are implicit operators, that are approximated by centred finite-difference schemes as 
follows: 

where hi = x i -  - xi. The same kind of relation is used for 

n(equation (7)) is a predictor for the velocity U"". Equation (8) is solved on the classical grid. The 
coefficient H"(equation (9)) is calculated by a collocation method, with the derivatives computed 
by formal derivation expansions in Chebyshev polynomials of the first kind." 

The pressure P is determined on the staggered grid and later computed by means of Chebyshev 
extrapolation on the classical grid. 

By extrapolation we shall mean a process to obtain values on the classical grid from those on the 
staggered grid and by interpolation a process to obtain values on the staggered grid from those on 
the classical grid. 

. 
a y  a 2 f l  i , j  

Velocity-pressure computation 

The direct process to compute the pressure is the following: by multiplying equation (8) by 
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(L,L,)- l ,  we obtain 

un+1-0= -St(L,LJ'V(P"+'-P"). 

By taking the divergence of equation (12), and because equation (2) has to be satisfied at time 
n + 1 ,  we obtain 

v-e = StV.(L,L,)-'V(P"+' - P"). (13) 

where V-(L,L,)- V = A is the operator connecting variations of pressure to velocity divergence. 
The pressure variation is obtained by solving equation (13) on the staggered grid, namely 

Exact computation of this pressure variation would give a velocity at  time (n + 1 )  satisfying the 
continuity equation. 

The square matrix A has [ ( N ,  - 1)  x ( N ,  - l)]' elements (for example, if N ,  = N ,  = 33, the 
matrix contains 1,048,576 elements). It is so large that we can only solve equation (14) by an 
iterative process using a matrix B. This new matrix is built with a small number of A diagonals. B is 
then modified to become an approximate factorized 9.42 matrix." This point is explained in the 
next section. 

So, at each time level, pressure will be obtained as the limit of a sequence of approximations: 
p;+ 1.. . p"+ 1 + p"+ 1. I 

The iterative process stops when the velocity divergence, computed from equation (12), is 

The pressure is determined by a relaxation process. Other methods could be used such as 

At iteration I ,  equation (14) becomes (with 9.42#A) 

smaller than a given value E .  

gradient methods. 

1 -  
st 

2.@(P;:: - P ; + l )  = -v.u - A ( P n + l -  1 P"). 

And, by means of equation (12), we obtain 

1 
9.%(P;:;  - P;") = -v.un+ (15) 

st [ + l '  

So the pressure is obtained on the staggered grid by 

where C-J is an under-relaxation coefficient. 

extrapolation. 
The pressure P;:; is then computed on the classical grid by means of a Chebyshev 

Finally, U;:: is computed by solving the system 

L,L,(u;:: - 0) = - StV(P;+l- P"), (17) 

Because the operators L, and L,  are centred finite-difference schemes (equation ( 1  l)),  
taking into account the boundary conditions on the velocity. 

equation (1  7) gives a tridiagonal system, easily solved on the classical grid. 



I Initialization I Initial field v (x, y, t = 0) 

I. 

Matrix E ZL 
computation 

RHS computation 
Lx.Ly (ij - p )  

Iteration loop (1 + 1) 4 
(Eqs. 15-16) 

extrapolation 

pf:: 

vf:; computation : 

~ , . ~ ~ ( y f : t  - = RHS 

Figure 2. Program organization: a Computation on classical grid; computation on staggered grid; 
_3 extrapolation; 3 interpolation 

Figure 2 gives the program organization. A test is added at the end to see whether the problem 
(see the section on the 'square cavity' regularized problem) has become stationary. 
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COMPUTATION OF THE ARTIFICIAL COMPRESSIBILITY MATRIX A 

Computation of the matrix A 

The matrix A is computed numerically column by column with the following technique: we set 

Qi(xj> = di j ,  

where dij is the Kronecker delta symbol; we then compute D' so that 

AQi = D'. (19) 
It contains the ( N ,  - 1) x ( N ,  - 1) elements of the ith column in the matrix A. Figure 3 gives 
the numerical technique for the calculation of the matrix A.  

L, and L, are approximated by centred finite-difference schemes with five points (equation (1 1)); 
the operator V is approximated by spectral technique by means of Chebyshev polynomials of 
the first kind. 

This very large matrix A with [ ( N ,  - 1) x ( N ,  - l)]' elements is singular. Only seven parasite 
modes are removed with the staggered grid. The constant mode is kept. 

Staggered grid Classical grid 

Qi Extrapolation d 
1 .  VQ' 

t 
A d  V. (Lx LyY' YQ' 

Figure 3. Matrix A computation scheme 

Approximation of the matrix A by the matrix B 

The matrix B is calculated by analogy with finite-difference schemes. Two possibilities are 
chosen: 

1. Only the principal diagonal of A is kept for building B. In that case, equation (14) is solved 
directly without 9-42 factorization. 

2. The other possibility is to keep five diagonals of A.  These diagonals correspond to the five 
points of the finite-difference scheme: 

i , j +  1 

i -  l , j ,  4. 1,j x i  + 1 , j  

J, i ,j  - 1 

. .  

The matrix B is presented in Figure 4. 
Only 5 ( N ,  - 1)(N, - 1)  words are used for computer storage of the matrix B. 

Approximate 9-42 factorization 

To solve equation (15) we use an approximate 9-42 factorization of B. For each triangular 
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Column Ny 

1 

< * 
(N, - l ) . (Ny  - 1) columns 

Figure 4. Matrix B with five diagonals 

matrix, 2': lower or 92: upper, a tridiagonal form is chosen. Figure 5 shows the decomposition. 
Each matrix contains three diagonals. All main diagonal elements of 2 are 1." 

Column Ny Column Ny 

B # f u 
Figure 5 .  Matrix B: approximate factorized 2'42 matrix 

Iterative process convergence 

To obtain values of the parameters q and CJ, we study, numerically, the convergence of the 

Table I. Convergence parameters 

Re = 2, N,=N,=9  

Re = 200, N , ,  N ,  = 17 

?I lo- '  1 0 - 2  10-3 

U 0.1 0'1-0.6 0.1-0.5 
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iterative process at the first time step of the computation of the square cavity regularized problem. 
Two cases are considered:Re = 2 and Re = 200, with two forms for the 9-42 matrix by analogy 
with finite-difference schemes: one diagonal and five diagonals. 

Table I gives the various values of y~ and 0 for which convergence is obtained with five diagonals 
for the 2-42 matrix. We have observed that the convergence is quickly reached for a value of the 
implicit parameter y~ equal to In this case, the under-relaxation parameter 0 varies between 
0 1  and 0.6 for Re = 200. 

For a one-diagonal matrix B, the results are not very different. So it seems that the number of 
diagonals is not a determinant factor of the y~ parameter. 

SQUARE CAVITY REGULARIZED PROBLEM 

To test the above algorithm, we compute the stationary solution for a viscous flow in a two- 
dimensional square cavity with the following regularized boundary conditions: 

[ U = V = O f o r x = l  or x = - 1 ,  V y ~ [ - l , + l ] a n d  f o r y = - 1 ,  V x ~ [ - l , + l ] ,  

The initial conditions are chosen such as: 

u, = - (1 - x2)( 1 + y)/2 
uo { v, = 0, V(X,Y)€[- 1, + 112 

This initial field satisfies boundary conditions but not continuity (equation (2)). 
The stationary solution is obtained when the time derivative IaU/atI is less than a threshold z: 

For the iterative process, the convergence threshold is E = The stationary solution is 
obtained for z = 

One- and five-diagonal cases for A have been studied. The computation for the one diagonal case 
is 40 per cent more expensive than for the five-diagonal case, because many iterations are necessary 

The other parameters are defined in Table 11. 

Table 11. Computation parameters used for the square 
cavity regularized problem 

Number of 
N x  diagonals 
N ,  Re 6t u v in matrix B. 

9 2 10-3 0.9 10-2  
1 

17 200 0.7 lo-' 
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I t  

1( 

5 

0 

- 5  

w (0, v). L 
(0.1) Various times 

t = 0.02 
t = 2.32 

........ t = 8.32 

- Stationary solution (t = 36) 

--- 

\ 
\ 

Figure 6. Time history of the vorticity along the axis x = 0 in a square cavity at Re = 200 and N ,  = N ,  = 17 

for the iterative process convergence when the matrix B contains only one diagonal. 
Results are given for a five-diagonal matrix computation. 
Figure 6 shows the non-dimensional vorticity w(O,y)L/U(O, 1)  (L= 2 is the cavity side length) 

on the central vertical axis, for various times up to the stationary solution t = 36. The Reynolds 
number is Re = 200 and the space discretization is N ,  = N ,  = 17. In Figure 7, isovorticity lines 
are presented for the same computation case. 

A comparison between the pseudo-spectral space-time method and the present method is 
given in Figure 8.3*'0 There is a very good agreement between these two methods. 

Remark 

A Chebyshev extrapolation has been used for drawing the picture of the pseudo-spectral 
space-time method. It is the main reason of the difference between the two figures (Figure 8). 

PRESSURE RESULTS FOR THE SQUARE CAVITY 

Figure 9 shows isobar lines with a space discretization of 16 x 16 points for the stationary 
solution. No parasite oscillation appears. Yet, a spurious mode exists in the pressure 
decomposition.' 

In the method described above, the pressure is expanded in a series of Chebyshev polynomials 
of the first kind as 
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t = 0.02 t = 2.32 

t = t s = 3 6  

Figure 7. Time history of iso-vorticity lines in a square cavity at Re = 200 and N ,  = N ,  = 17 

10- i 
+ pseudo-spectral 

- Present method 
space-time method 

(a) - Vorticity on y-axis at x = 0. 

Pseudo-spectral 
space-time method 

Present method 

(b) - Iso-vorticity lines 

Figure 8. Comparison with the pseudo-spectral space-time method for a square cavity at Re = 200 and N ,  = N ,  = 17 
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X L 

0.040 

1-1 

185 

Figure 9(a). Isobar lines in a squarecavity at Re = 200 and N ,  = N ,  = 17. Stationary solution: - 0.06 < pressure 4 + 0.15 
with steps of 0.005; .............. negative pressure; -------- zero pressure; ~ positive pressure 

Figure 9(b). Enlargement of the square region at the top left of Figure 9(a). Key as  for Figure 9(a) 

m = O n = O  

The spurious mode is the ( M , M )  harmonic of the pressure expansion in series of Chebyshev 
derivative polynomials T m ( x )  T f l ( y )  as 
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M M  

P(x ,Y )=  1 1 brn,nTrn(x)C(Y). 
m = O n = O  

Classical properties of Chebyshev polynomials give the relation 

1 
b M , M  =*a”- 1 , M -  1’ 

For example, the numerical values of bM,M are the following: 

b8,8 = b16.16 = 4 x 

As soon as the discretization M is high ( M  > 16), the value of the spurious mode is too small 
to induce parasite oscillations. 

Arbitrarily, we have modified the uM-  l . M -  harmonic at t = 0.01 ( V in Figure 10) and at t = 45 
(+ in Figure 10). The pollution appears as a constant on odd harmonics uZ1+ 1,21+, only. Figure 11 
shows isobar lines of the stationary solution with a modification of the u M -  l , M -  harmonic at 
t = 0.01. 

The pressure gradient and the velocity are not modified even if the pressure expansion presents 
a chequerboard harmonic. 

CONCLUSION 

The above iterative algorithm for computing the pressure gives very accurate results. 
This way of determining pressure by solving the continuity equation is consistent with the 

Navier-Stokes problem in which boundary and initial conditions are only given for the velocity. In 
our present case, no boundary conditions are necessary for the pressure. 

To improve the efficiency of the method, we could use a more elaborated algorithm for iterative 
calculation of pressure: ‘steepest descent’, the ‘Axelsson algorithm’, etc. 

Computation on a staggered grid for the velocity divergence avoids most of the effects of parasite 
modes that appear in the classical velocity-pressure formulation and gives us results with a 
spectral accuracy. 

NOTATIONS 

artificial compressibility matrix 
approximate matrix of A 
square cavity side length (L = 2)  
implicit operators: Lx = 1 - y d2/dx2, L, = 1 - y d2/dy2 
approximate factorized matrix of B 
number of discretization points on x and y axes, respectively 
pressure 
Reynolds number: Re = U(0,l)Llv = 2/v 
velocity vector with two components ( U ,  V )  
position vector with two components (x,  y )  
time-step length 
Laplacian operator: A = d2/dx2 + d2/dy2 
convergence threshold for the iterative process 
implicit operators parameters 
kinematic viscosity 
relaxation coefficient 
convergence threshold for the stationary solution 



5 x l O - I  

10-1 

5x10-> 

10-2  

5 ~ 1 0 . ~  

10-3 

5x10-4 

1 0 - 4  

5x10-5 

1 c  

pChebyshev 
M-1,M-I 

t 
5 1 0  15 20 25 3 0  35 4 0 4 5  5 0  55 60 65 70 t 

Figure 10. Amplitude of the pressure Chebyshev mode ( M  - 1, M - 1 )  for M = 1 6  U no amplification; 
---+-----c- amplification at t = 45; ---F----F amplification at t = 0.01 
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I-’ 
Figure 1 I(a). Isobar lines in a square cavity at Re = 200 and N ,  = N ,  = 17. Stationary solution after amplification at  
t = 0.01: - 0.06 < pressure < + 0.15 with steps of 0.005; ------ negative pressure; - - - zero pressure; ~ positive 

pressure 

X 

Y 

Figure 1 I(b). Enlargement of the square region, at the top left of Figure I I(a). Key as for Figure 1 I(a) 
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